Model population analysis for variable selection
نویسندگان
چکیده
منابع مشابه
Model population analysis for variable selection
To build a credible model for given chemical or biological or clinical data, it may be helpful to first get somewhat better insight into the data itself before modeling and then to present the statistically stable results derived from a large number of sub-models established only on one dataset with the aid of Monte Carlo Sampling (MCS). In the present work, a concept model population analysis ...
متن کاملVariable selection in model-based discriminant analysis
A general methodology for selecting predictors for Gaussian generative classification models is presented. The problem is regarded as a model selection problem. Three different roles for each possible predictor are considered: a variable can be a relevant classification predictor or not, and the irrelevant classification variables can be linearly dependent on a part of the relevant predictors o...
متن کاملVariable Selection for Model-Based Clustering
We consider the problem of variable or feature selection for model-based clustering. We recast the problem of comparing two nested subsets of variables as a model comparison problem, and address it using approximate Bayes factors. We develop a greedy search algorithm for finding a local optimum in model space. The resulting method selects variables (or features), the number of clusters, and the...
متن کاملVariable selection for proportional odds model.
In this paper we study the problem of variable selection for the proportional odds model, which is a useful alternative to the proportional hazards model and might be appropriate when the proportional hazards assumption is not satisfied. We propose to fit the proportional odds model by maximizing the marginal likelihood subject to a shrinkage-type penalty, which encourages sparse solutions and ...
متن کاملVariable selection for generalized canonical correlation analysis.
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to 3 or more sets of variables. RGCCA is a component-based approach which aims to study the relationships between several sets of variables. The quality and interpretability of the RGCCA components are likely to be affected by the usefulness and relevance of the varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemometrics
سال: 2010
ISSN: 0886-9383
DOI: 10.1002/cem.1300